This page is duplicated in text only for use with the NICAP search engine.  To actually view and use the original page,
Charts for the text below and found embedded in the original text are linked here

The Trent Farm Photos  

(This paper was originally published in the proceedings of the 1976 UFO Conference of the Center For UFO Studies. This version has been modified slightly in april 2000 for this Publication. This is the first of two technical and historical papers on The Trent photo case that were presented to and published by The Center For UFO Studies (CUFOS), which is located in Chicago, Illinois. On the possibility that the McMinnville photos show a distant unidentified object (UO) 

During the Air Force funded investigation of UFO reports at the University of Colorado in 1967-1968 (the "Condon Report"), photoanalyst William Hartmann studied in detail photographic and verbal evidence presented by two former residents of McMinnville, Oregon, Paul and Evelyn Trent. He concluded, mainly on the basis of a simplified photometric analysis, that "all factors investigated, geometrical, psychological and physical, appear to be consistent with the assertion that an extraordinary flying object, silvery, metallic, disk shaped, tens of meters in diameter and evidently artificial, flew within sight of two witnesses." An important part of his analysis included calculations of the expected brightness of the image of the bottom of the Unidentified Object (UO) that appears in the first photo. He pointed out that the elliptical image of the bottom was brighter than expected if the object were close and therefore a small model. The excessive image brightness led him to conclude that the object was at a great distance (over a kilometer), His conclusion was criticized by Philip J. Klass and Rober Sheaffer who argued that veiling glare (caused by surface dirt and imperfections in the lens which scatter light from bright areas of the image into all other areas of the image) could have increased the brightness of the image of the UO, making it appear distant. 

This investigation revisited and improved upon Hartmann's method with the following modifications: 

the bottom of the UO in the first photo has been assumed to be as intrinsically bright as possible without being a source of light (i.e., assumed to be white) laboratory measurements have been used to estimate the magnitudes of veiling glare added to the various images of interest a film exposure curve has been used to determine relative image illuminances, and a surface brightness ratio, determined by field measurements, has been included. The results of the new photometric analysis suggest that the bottom of the UO is too bright for it to have been a non-self-luminous white (paper) surface of a nearby object. Hence it could have been distant. 


In June 1950, four weeks after they were taken, the photos illustrated below appeared in the local newspaper in McMinnville, Oregon. 

Subsequently, they appeared in Life Magazine and in many publications,devoted to UFO reports. Although they clearly depict an unusual object, they were never treated as scientifically valuable because it was always considered probable that they were photos of a hoax object (e.g., "a garbage can lid"). Nevertheless they did gain a large measure of scientific "stature" when, in 1968, Hartmann(1) concluded that the object may have been distant and, therefore, large (i.e. not a hoax). Since the publication of Hartmann's conclusion in the "Condon Report" (1) these photos and the verbal evidence associated with them have been the subject of a continuing controversy. A brief history of the analysis of the photos is given in Figure 3 (click to view).

A Brief History of the McMinnville Photos 

Publication: 8 June 1950. The Editor stated that "expert photographers declared there has been no tampering with the negatives. (The) original photos were developed by a local firm. After careful consideration, there appears to be no possibility of hoax or hallucination connected with the pictures. Therefore, the Telephone-Register believes them authentic." - The Telephone Register, McMinnville, Oregon

Subsequent Immediate Publications:

The Portland Oregonian, Portland, Oregon, 10 June 1950  (contains further verbal information) 
The Los Angeles Examiner, Los Angeles, California, 11 June 1950  (contains further verbal information) 
Life, June 1950  (contains further verbal information) The photos were "lost" in the files of the International News Photo Service and subsequently in the files of UPI until they were "found" by the Condon UFO study project in 1968.

Condon UFO Report -Conclusion by Wm. Hartmann, case investigator: Certain physical evidence, specifically relative photographic densities of images in the photographs, suggests that the object was distant; if the object was truly distant, a hoax could be ruled out as beyond the capabilities of the photographer. (NOTE: Hartmann's report contains a good summary of the verbal evidence available up to 1967.)

Sheaffer-Klass Conclusion (1974): 
There are some possible inconsistencies in the verbal evidence and several important discrepancies between the verbal report and the photographic evidence. Hartmann's photometric analysis was incomplete. Specifically: 
[a] shadows on the garage wall (facing east) suggest that the pictures were taken in the morning, not in the evening as claimed; 
[b] the apparent shrinkage of the shadow nearest the edge of the garage suggests that there were many minutes between photo 1 and photo 2; and 
[c] veiling glare could have made the image of the bottom of the UO excessively bright thus leading Hartmann to erroneously conclude that the object was distant. 

Present Investigation : New testimony (published in a companion paper to this) has been obtained and the original negatives have been studied photogrammetrically as well as photometrically. The present investigation has confirmed that there are shadows on the garage wall (agree with (a) above), but has found that, to within the resolution of the measurements (using a traveling microscope), the shadows other than the one at the edge of the garage did not move with respect to the garage wall between photos (the shadow at the edge of the garage does appear narrower in photo 2)(disagree with (b) above). The present investigation has reviewed and confirmed the general validity of Hartmann's analysis. When the effects of veiling glare and the ratio of brightnesses of vertical and horizontal surfaces have been accounted for the Hartmann-type analysis again indicates a large distance (disagree with (c) above).

A Brief History of the McMinnville Photos (cont.)

The initial analysis was carried out by a photographer (Bill Powell) who worked for the McMinnville Telephone-Register (now the News Register). Hartmann confirmed the original analysis and went on to conclude that the object was asymmetric and that it was probably not rotating about a (nearly) vertical axis (i.e., was not thrown into the air). Hartmann pointed out that the possibility for a simple hoax existed since the photos show the UO as appearing to be "underneath" two nearby power wires. However, he carried out a simplified photometric analysis which led him to conclude that the object was distant and that "the simplest, most direct interpretation of the photographs confirms precisely what the witnesses said they saw." A modified version of Hartmann's analysis will be presented in the next section to illustrate the use of photometry. In 1974 Philip Klass (2) published an analysis of the verbal evidence by himself and of the photographic evidence by Robert Sheaffer (2,3). They found a puzzling inconsistency between the photos and the verbal description: the photos show clear shadows on the east wall of the nearby garage, which implies that the pictures were taken in the morning, while the witnesses claimed that the pictures were taken in the evening. Sheaffer argued, on the basis of measurements of the width of the shadow of the eave rafter at the corner of the garage, that there was a considerable time lag between photos rather than "less than 30 seconds" as claimed (see Figure 3).
 However, Sheaffer's most important "discovery" was that dirt on the camera lens, or a poor quality lens, could have caused light from the bright sky surrounding the image of the UO to "spill over" onto the image of the UO, thus making the UO image excessively bright. In Hartmann's analysis the excessive brightness was attributed to the effect of the atmosphere on the apparent brightness of an object if it were distant. By attributing the excess brightness to a camera defect, Sheaffer was able to argue (qualitatively) that the distance calculation was in error and that "in reality" the object was close to the camera. He was, thus, able to remove the main inconsistency with the simple hoax hypothesis: the object, a model UFO, was hanging from wires that were less than twenty feet from the camera.

In late 1973, unaware of the work of Sheaffer and Klass, I decided to undertake an investigation of the McMinnville case because (a) the pictures are so clear the object is either a hoax device or an unusual object (no misinterpretation seems possible; e.g., it's not a plane at an odd angle), and (b) Hartmann had devoted considerable effort and analytical research to the photos and had concluded on the basis of this physical evidence that the object was distant (not a hoax). Considering the general tone of the Condon Report (skeptical), I felt that Hartmann must have been quite confident to publish the conclusion he drew from his analysis. He could have decided to do no photometric study and then he would have been "safe" in saying that the case provided "no probative evidence" and that, furthermore, it was probably a hoax. Or, he could have reported the photometric study with such disclaimers as "the photos are so poor (scratched, worn, etc.) that the photometric study is probably in error by a considerable amount." (NOTE: Dr. Condon wrote in the executive summary chapter that photoanalyst Everitt Merritt, who was not a part of the Colorado University UFO research project, had already "thrown out" the photos as being too fuzzy for worthwhile photogrammetric analysis. But photogrammetric analysis, which makes use of angular separations of images, is different from photometric analysis, which makes use of relative image brightnesses. I am certain that Condon knew the difference between photometric and photogrammetric analysis. It appears that he tried to "cover up" the success of one [photometric] with the "failure" of the other [photogrammetric] by not mentioning Hartmann's analysis in the executive summary of the research.) Dr. Hartmann did point out that his analysis might only be correct to within a factor of four, but, even with an error bar this large, several hundred meters was the closest distance compatible with his analysis.

Since Hartmann had essentially endorsed the photos as probably genuine, I decided to try to either confirm or refute his result in a study of my own. Since I was somewhat skeptical myself, I fully expected to be able to show that either the atmospheric theory he used or the photometric measurements were wrong (or incorrectly applied). After a several year study, I have concluded that the general form of Hartmann's analysis is valid. However, I have found that he ignored or was unaware of several "details" of the necessary photographic analysis which will be outlined in the following section. I was not able to confirm the specific numbers which he gave as relative brightnesses of various images on the photos. At least part (perhaps a major part) of this discrepancy is due to a difference in measurement technique: Hartmann measured transmission values of small portions of the images of interest and then divided by the transmission "somewhere" along the horizon; he thus did not have good estimates of average brightnesses of the images. I used a scanning densitometer with a very small aperture and averaged over many scans across an image of interest. However, despite the (not large) difference in the relative brightnesses obtained in the two independent investigations, the conclusions have turned out to be essentially the same, as will be seen.

Photometric Analysis of the McMinnville Photos

In the spring of 1975 I was able to locate, with the incidental help of Mr. Klass, the original negatives. (They were in the possession of Philip Bladine, the editor of the newspaper.) Consequently, all density values given in this paper are from those negatives. They were measured on a Joyce-Loeble densitometer that was repeatedly calibrated with a Kodak standard diffuse neutral density "wedge." Although many areas of both photos have been scanned to establish consistency between the exposures, etc., only the density values pertinent to the range calculation will be listed here. These values along with other pertinent photographic data are listed in Table I. The analysis is based on Hartmann's method with the following modifications:
(1) I have used an exposure curve relation for the negatives based on a published D-LogE' curve for Verichrome film whereas, Hartmann implicitly assumed "gamma" = 1 (Film "gamma" relates exposure level or image density to illumination of the film or image brightness. See illustrations labelled "TrntGamma6Curve.gif" and TrntGAMACurves.gif.) Other possible film types are Plus-X and Plus-XX, both Kodak films, but the exposure curves of these are similar to that of Verichrome; measures of the fog density suggest that only Plus-XX and Verichrome are compatible with densities found in unexposed regions; Verichrome was the least expensive, hence most likely to have been used; Verichrome has low sensitivity to red light.);
(2) Since the negatives are pale (1,4), that is, the density range starting from the fog level is not as large as expected for a sunlit day, I have assumed that the negatives were slightly underdeveloped and have, therefore, used an exposure curve for gamma = 0.6, even though it was standard procedure to develop to a gamma of about 1 (4);
(3) I have used a photographic formula to relate image illuminance to object brightness;
(4) I have incorporated laboratory derived estimates of veiling glare; and
(5) I have incorporated the brightness ratio of a shaded vertical surface to a horizontal surface seen from below. The ratio was obtained from field measurements. This brightness ratio was ignored by both Sheaffer and Hartmann.
The first step in the analysis is to determine the relative illuminance on the film plane which produced the image densities. Simple photographic theory corrected for the effects of veiling glare predicts that

E' = image illuminance = K(B + G) cos^4(A) (1)

where K is a constant for a particular picture (and is assumed to be the same for both photos here; this involves f-number and shutter time), B is the brightness in the absence of glare of the object being photographed, G is the amount of veiling glare added to the image, cos^4 is the cosine raised to the fourth power and A is the angle between the lens axis and the direction to the object. Defining Ei = E'/[Kcos^4(A)], and substituting the empirical exposure curve relation between measured image densities and their causative illuminances, yields the total image "brightness" given in Eq. 2 (see Table I). The brightness in the absence of glare is then found by subtracting the glare on the image, as in Eq. 3 (see Table I).


The atmospheric Extinction Coefficient (12 mile visibility from weather report), b = O.2/km.
The distance to white house across the Salmon River Parkway is about 360 meters
The focal length of the lens = 103 (+/-) 5 mm
The f# was probably about f/ll
The shutter time was probably 1/125
Relative exposures or "total image brightnesses" have been calculated from

Ei = Eo {exp[2.303(Di/gamma - k/Di^3)]}/{Kcos^4(A)}  (2)

where Ei is the image exposure, Di, is the measured density for Di>0.1, Eo and k are constants that depend upon the film development "constant," gamma. Table IV contains a listing of values of E, and k for various values of gamma.
The relation between image brightness, B, image exposure, Ei, and veiling glare on the image, Gi is

B = Ei - Gi  (3)

The amount of veiling glare added to an image is proportional to the brightness, Bs, surrounding the image: Gi = gi x Bs, where values of gi for particular sizes and shapes of images in particular surrounding brightness distributions have been measured in the laboratory. With a brightness distribution similar to that of the photos (bright above the horizon, dark below the horizon), a laboratory simulation has shown that, when a lens is sufficiently dirty to produce guo ~ 0.12, i.e., glare in the UO image is abou 12% of the surrounding brightness, then g(distant house)~ 0·035 and g(horizon) ~ 0·05.
Let the ratio of the brightness of a vertical, white, shaded surface (the wall of a white house)to the brightness of a horizontal white surface viewed from below(hypothetical UFO model with a white paper bottom) be called Rb.

Field measurements show that 2.4 < Rb < 4.7. In the calculations done here I have used Rg = 2.4 to be conservative. Use of a larger Rb would result in calculated distances greater than reported here.

Atmospheric brightening formulas for range r (the formulas first used by Hartmann) are:

(a) B(r=0) = intrinsic brightness = Bh + (B(r)-Bh) e^(br)  (4)

(b) r = range = (1/b)Ln{[B(r=0)- Bh]/[B(r) - Bh]}  (5)

where B(r) is the measured brightness at range r, Bh is the horizon brightness and b is the atmospheric extinction coefficient.

To illustrate the photometric method I shall first summarize Hartmann's analysis, and then I shall present a range calculation based upon the simplified analysis. Hartmann pointed out that the upper bright side of the object appears brighter than the side of the nearby tank and that the elliptical shaded bottom is the brightest shadow in either photo. He attributed the excessive brightness of the bottom of the UO to atmospheric brightening. (NOTE: the contrast between the brightness of an object and that of the sky, assumed to be brighter than the object, approaches zero as the distance to the object increases, i.e., the apparent brightness of the object increases until it matches that of the sky at a great distance.) By definition the intrinsic brightness of an object is the brightness measured from a very short distance. By assuming the intrinsic brightness of the bottom of the UO was the same as that of the shaded bottom of the tank, and using the formula which attributes increased brightness to atmospheric effects over a long distance (Equation 5 in Table 1), he estimated that the range to the object was about 1.3 km, based on his estimate of b (0.289/km.). (NOTE: all his brightnesses were normalized to the horizon brightness so Bh = 1 in his version of Eq. 5). He then pointed out that if the UO were nearby under the wires, the bottom must have been very white, even brighter than the shaded white surface of the distant house which appears near the bottom of the photos.

I have modified Hartmann's analysis by assuming at the outset that the bottom is as bright a surface as would have been available to the photographers (white paper) without being itself a source of light. (Note: the witnesses described the bottom as being copper colored or darker than white. Use of a darker bottom in the following analysis would result in a greater calculated distance.) This assumption has led me to compare the relative brightness of the bottom of the UO with the relative brightness of a hypothetical nearby horizontal shaded white surface as seen from below. The brightness that a horizontal white surface seen from below would have had under the circumstances of the photo has been estimated from the relative brightness of the vertical shaded white surface of the distant house (and also from the shaded white surface of the wall nearby Trent house) and from the brightness ratio Rb in table 1.

If, in a naive way, the intrinsic brightness of a vertical white shaded surface (house wall) is equated to the intrinsic brightness of a horizontal white surface as seen from below (whereas the horizontal surface actually may be somewhat less than half as bright), that is, if Rb is set equal to 1 , and if the effects of veiling glare are ignored (G in Eq. 3 is set equal to zero), then the range of the UO can be calculated from Eq. 5 using as B(r=O) the brightness of a nearby vertical shaded white surface (the Hartmann method). The shaded wall of the distant house was used by Hartmann to estimate the relative brightness of a hypothetical nearby vertical surface (see the illustration labelled "TrntWhteHouse.gif) by correcting the relative brightness of the wall for atmospheric brightening using Eq. 4 (Table I). If the object were hanging under the wires then, by this (naive) reasoning, the brightness of the hypothetical nearby vertical surface should equal the brightness of the bottom of the UO, and Eq. 5 would yield r = 0. Such a result would be consistent with the hoax hypothesis.

However, Hartmann found that the brightness of the image of the bottom of the UO was actually greater than the brightness of his hypothetical neaby vertical surface. Hartmann's calculation is duplicated in Table II except that I have used b = 0.2/km rather than 0.289/km. The table lists the pertinent relative "brightnesses," Ei (uncorrected for glare), the correction of the distant house wall "brightness" for atmospheric brightening, and the range calculated from Eq. 5. The calculated range, 1.4 km., agrees with Hartmann's result and is clearly inconsistent with the nearby UO hypothesis.


Modified Hartmann method
Assume the bottom is white and use gamma = 0.6
Ehorizon = 0·039 (+/-) 0.002;
Edistant house shadow = 0.018 (+/-) 0.001;
Euo = 0.022 (+/-) 0.001 ;
Esky = 0.070 (+/-) 0.001.
Atmospheric Extinction Coefficient (based on visibiliy range): b = 0.2/km
Distance to White House: 0.36 km
Now use the measured brightness of the distant shaded vertical white wall to obtain the brightness of a hypothetical nearby white shaded surface by "removing" the atmospheric brightening (Eq. 4 of Table I): 0.039 + (0.018 - 0.039)e^(0.2x0.36) = 0.0164 (+ /-)0.001.
Now assume 0.0164 to be the intrinsic "brightness" of the bottom of the UO and calculate its range:
r = (1/(0.2/km.) x Ln[(0.0164 - 0.039)/(0.022 - 0.039)] = 1.42 (+/-) 0.6 kilometer.

Accurate calculations of object brightnesses require corrections for veiling glare, as pointed out by Sheaffer. Since, in the first approximation, the phenomenon (scattering) which produces veiling glare simply adds light (from the brighter areas) to the darker areas, it is only necessary to subtract the amount of glare from an image to find the object brightness (Eq. 3). The problem is to find the amount of glare on an image. After some considerable thought and experimentation I found a way to estimate the glare on the Trent photos using laboratory simulations.

In order to estimate amounts of glare on the images of interest in these photos, I have conducted laboratory experiments with several camera lenses, one of which was comparable (but not identical) to the lens on the camera that took the photos. I simulated the brightness distribution of the sky with a large screen which was illuminated from behind. Below the simulated "horizon" (the bottom of the bright area) there were no sources of light. I then measured brightness distributions in the bright and dark areas when there were varying amounts of grease on the lens. (Measurements were made with a linear photodetector and a small aperture that could be moved about in the focal plane of the lens.) The light that "turned up" in·the dark areas was the glare light, G, which would have appeared on any images that might have been present in the dark areas (although no such images were present in the laborstory simulation). Values of G were proportional to the "sky" brightness, Bs, so that at each point on the image plane a glare index, gi, could be defined as gi = Gi/Bs. For the present work it was important to have values of gi for images 2 degrees below the horizon (the angle of the image of the distant house) and for images at (or just below) the horizon, when the glare index for an image of the angular size and shape of the elliptical bottom of the UO was a particular value.
I carried out the experiments as follows. First I placed an ellipse of dark paper with the angular size of the UO in photo 1 on the bright screen. I then put some dirt or grease on the lens in order to increase the glare and measured the amount of glare light at the center of the image of the dark ellipse. This was defined as the "glare index" for a particular amount of grease/dirt. I also measured brightness variations in sumulations of other images in the photos with the same grease/dirt. Of particular interest was the image of the large telephone pole in Photo 1. Measurements of the brightness variation of the image of the pole showed that below the horizon the image was of a nearly constant brightness, and that above the horizon the image increased in brightness as the angular altitude increased. I attributed this increase in brightness to an increase in the glare light added to the pole image (thus implicitly assuming that the brightness of the pole was intrinsically constant from its bottom to its top; however, I have observed that, probably because of weathering, the brightness of many wooden telephone poles increases with height along the pole; the result, in these calculations, of my assumption of constant intrinsic brightness is an overestimate of the actual glare and therefore an underestimate of the calculated distance to the UO). I simulated the pole image in the laboratory setup by placing s strip of black paper of the same angular width and height as the pole on the bright screen above the simulated horizon. I measured the brightness of the image of the simulated pole on the focal plane of the simulated camera. Since the paper was black and the only illumination was from behind the paper the measurement would have given zero brightness if there had been no glare. However, by changing the amount of grease on the lens, I was able to adjust the brightness of the simulated pole image; the more grease the brighter then simulated image. Thus, a distribution of values of gp along the pole image (glare on the pole image vs height) was measured for each amount of grease. Then the laboratory determined values of gp vs. altitude alog the pole were multiplied by a value of Bs determined from the sky brightness of Photo 1 to obtain the amounts of glare, Gp, that would have been added to the actual pole image in Photo 1. By adjusting the amount of grease on the lens, I was able to obtain a set of values of gp, that is, a graph of gp vs height, which, when multiplied by the sky brightness of Photo 1, yielded a "theoretical" brightness increase that was close to the increase in brightness of the actual pole image, that is, the graph of pole image brightness vs height. (See Figure A16 in the Appendix.) In other words, I was able to approximately fit the laboratory data to the measured increase in pole brightness. I then measured the glare index (the glare in the simulated UO image as described above) for the same amount of grease on the lens. I also measured the glare below the horizon at the angular distance of the distant house below the horizon. (Briefly, I used the pole glare distribution in the photo to determine the amout of grease in a simulation and then measured the UO glare in the simulation and calculated from that the glare in the photo image of the UO.) The amount of grease which yielded the most correct set of values of gp for the pole image also yielded guo = 0.12 for the image of the UO, and the other values of gi given in Table I. These values have been used in the following analysis, even though other measurements have strongly suggested that guo = 0.12 is probably too high. (Typical values of veiling glare in an image the angular size of the UO in Photo 1 would be less than 0.09.) Moreover, measurements of the brightness variations in certain other images in the photos suggest that guo = 0.12 is be too high (0.07 might be better). More details of the result of the glare experments are presented in the Appendix to this paper.

The effect of the inclusion of veiling glare is readily apparent when it is applied to the image illuminances, Ei, shown in Table II. For example, the horizon brightness is found to be Eh - Gh = Eh - ghBs (where, from Table I, gh= 0.05) = 0.039 - (0·05)(0·07) = 0·0355. Similar calculations yield the relative brightnesses given in Table III. Note that in this first order theory the small loss of brightness from the bright areas is ignored, so Esky = Bsky.


Relative Object Brightnesses with Esky = Bsky = 0.07:
Bhorizon = Eh - Gh = Eh - ghBs = 0.039 - (0.05)(0.07) = 0.0355;
Bdistant house shadow = 0.018 - (0.035)(0.07) = 0.0155.
After atmospheric distance correction,
Bnearby vertical shadow = 0.014;
Buo = 0.0136

From Table III one can observe that a major effect of the inclusion of veiling glare is to make the brightness of the bottom of the UO equal to (or slightly less than) the brightness of a vertical shaded white surface. Naive use of Eq. 5 with B(r=0) = 0.014 and B(r) = Buo = 0.0136 would yield a range of zero (negative numbers are not allowed), so Sheaffer's conjecture that the apparent distance of the UO could be explained by veiling glare has merit. (NOTE: If guo were 0.07 and the other values of gi were proportionately lower, the range would not be zero but about 400 meters.)

If there were no other correction factors this would be the end of the analysis. However, field measurements with a spot photometer have shown that it is incorrect to equate the brightness of a shaded vertical white wall with the brightness of a horizontal surface as seen from below.

A shaded vertical wall which is on the order of ten feet above the ground and which is not closely surrounded by trees is illuminated by direct sky light as well as by light reflected from the ground. On the other hand, the horizontal bottom surface of a body which is less than ten feet above the ground is illuminated only by light reflected from the ground. Since the ground reflectivity is not particularly high (15-30% for grassy ground), one would expect the illumination on the horizontal (or nearly horizontal) bottom of an object to be less than that on the vertical surface. Thus, from a priori reasoning one should not equate the relative intrinsic brightness of a white shaded vertical surface to the relative intrinsic brightness of a white shaded horizontal surface seen from below. To provide a quantitative estimate of the ratio of brightness of a vertical surface to a horizontal surface, Rg, (see Table I) I made field measurements with a calibrated panchromatic 3.5 degree field of view spot photometer. I measured the brightness of the white wall of a house when the wall was shaded by the eave and when the sun angle and sky conditions were similar to those at the time of the UO photos. Under the same environmental conditions, I measured the brightness of an opaque white paper surface held about seven feet above the ground. Many measurements of the surfaces were made with the result that the house wall was found to be 1.5 to 2 "stops" (photographic terminology) brighter than the bottom of the white surface, depending upon the exact nature of the ground (grassy, dirt, etc.) and upon the sky brightness distribution. Allowing a 1/4 stop possible error in the readings, the brightnass ratio lay within the range 2^1.25 = 2.4 to 2^2.5 = 4.7 (see Table I). To be "conservative" I have used Rb = 2.4 in these calculations. (NOTE: This ratio was measured with panchromatic meter. If a filter had been used to simulate the orthochromatic Verichrome spectral response, the measured ratio might have been as much as 30% greater.) The measured brightness of the bottom of the horizontal surface did not change noticeably when the surface was tilted by as much as 20 degrees.

From Table III the relative brightness of a nearby vertical white shaded surface was 0.014. From the field measurements this value should be divided by a number at least as great as 2.4 to obtain the relative brightness of a nearby horizontal white shaded surface, which is assumed to be the brightness of the bottom of the nearby UO. With Bh = 0.0355, Buo = B(r=0) = 0.0136 (see Table III), with B(nearby horizontal surface viewed from below) =·0.014/2·4 = 0.0058, and with b = 0.2 (Table I) the range calculation yields about 1.5 km.
Variations in the calculated range with variations in the parameters of the range equation are as follows: (a) the calculated range increases as the glare decreases; for example, if there were no glare the range would be calculated from Euo = Buo = B(r) = 0.022, Bh = 0.039, (from Table II) B(r=0) = 0.0164 /2.4 = 0.0068 and Eq. 5 would yield about 3.2 km.; (b) the calculated range increases with increases in the ratio Rb; for example, if Rb = 3, using the brightnesses in Table III and B(r=0) = 0.014/3 = 0.00467, Eq. 5 yields arange of about 1.7 km.; (c) the calculated range increases with gamma as indicated in Table IV.



*angular diameter in photo 1 is 0.0283 radians (in photo 2, 0.0248 radians) based on the assumed focal length of 103 mm which is the approximate value for the cameras of the type used (assumed to be a Kodak Monitor or Vigilant)
**angular thickness excluding "UO pole" in photo 2 is 0.004 rad. based on the 103 mm focal length
#curves for these values of gamma were synthesized by extrapolation from published curves·which show gamma in the range 0.6 to 1.0. These results are included for completeness. However there is no evidence at all that the gamma would have been lower than 0.6. In fact, it is more likely that gamma was greater than 0.6. See note 11.

Table IV also contains a list of ratios of the brightnesses of the bottom of the UO to the expected brightnesses if the object were close and had a white bottom (the brightnesses of a nearby horizontal shaded white surface). Since the expected relative brightnesses were calculated using a white surface (the distant house wall or the nearby house wall - see Appendix) as a reference, the ratios imply that the bottom of the UO was "brighter than white" whenever reasonable values of gamma, i.e., gamma > 0.6, were used in the calculation. White surfaces reflect most of the incident light (both white paint and white paper have reflectivities in the range(6) of 60-80%). If we assume, for example, that the white paint on the distant (or nearby) house reflected only 60% of the incident light, then a brightness ratio greater than 1/0.6 = 1.67 would imply that, if the UO were a small nearby model. then its bottom was a source of light (it could not reflect more light than 100% of what was incident on it; 1.67 X 60% = 100%). As shown in Table IV, for reasonable values of gamma the calculated ratio Buo/B(r=0) exceeds 1.67 by a considerable margin. Actually 1.67 is an upper bound on the ratio if the distant house reflected 60% of the light because any white surface which the witnesses would have available to place on the bottom of their hypothetical nearby UO would have a reflectivity lower than 100%. If the bottom were white paper, the reflectivity would be, at maximum, about 80%, in which case the maximum expected ratio of the brightness of the bottom to the expected brightness would be 0.8/0.6 = 1.33. (NOTE: If the white painted surface were known or assumed to be dirty, the reflectivity would be decreased and the brightness ratio increased. For example, to obtain the brightness ratio 2.34 which is obtained when gamma = 0.6 (see Table IV) with 80% reflective paper on the bottom of the object, the distant wall reflectivity would have to be as low as 0.8/2.34 = 0.34. On the other hand, measurements of the image density of the shaded wall of the nearby Trent house, after correction for veiling glare, yielded an upper bound on the relative brightness of a shaded white vertical surface of 0.0171, which is only 0.0031 units higher than the value 0.014 in Table III. This house was reportedly painted in the year previous to the sighting date, so the paint must have approached its maximum reflectivity. Use of this value, after dividing by 2.4, with the other brightnesses in Table III yields a distance of about 1.3 km, and a brightness ratio of 1.9, which is still larger than 1.67 and 1.33.)

The implication of the brightness ratios for reasonable values of gamma is that the bottom of the UO was itself a source of light if it were nearby (e.g., within 20 feet under the wires). To be a source of light it would have to have (a) contained a source of light, or (b) been made of translucent materials so that light could filter from the sky above through the bottom surface. Requirement (a) is considered beyond the capabilities of the photographer because a very small illumination apparatus would have been required and because the illumination mechanism, a small light bulb, would have produced a very uneven distribution of light over the bottom surface in contradiction to the fact that there are no "hot spots" of brightness in the image of the bottom (see TrntDensUO1.gif and TrntDensUO2.gif). Requirement (b) above is considered a possibility if the upper body of the UO were a translucent material.(7) Any holes through the upper body would allow direct sunlight through, and these would cause brightness "hot spots" on the bottom surface. On the other hand, a translucent or transparent material such as glass would probably not "look" the same in a side view as the object appears in photo 2 (apparently shiny like the nearby tank, but not a mirror - like specular surface). Any hypothetical translucent UO must appear, in a side view, as bright and "shiny" as does the object in photo 2 (also, it must be shown that an appropriately translucent or transparent material in the proper shape was available to the photographers).

Independent tests of the density distributions·of the images of the object and its surround and of the density distributions of nearby objects in the photos have been made (8). Color contouring (using a computer to assign specific colors to specific density ranges) has shown that (a) the "back" end (left hand end in photo 1) of the object appears slightly non-circular (actually it comes to a slight or shallow "point"), and (b) the edges of the image are rough or jagged (the color contour boundaries are not smooth curves), whereas the edges of the images of nearby objects, and particularly of the wires "above" the UO, are relatively smooth. Observation (b) may be related to an atmospheric effect on images: the distortion of an image increases quite rapidly as the object distance increases up to about a kilometer, and then the distortion increases very slowly or not at all with further increases in range. The atmospheric conditions assumed for a hoax (morning, no wind) may have been conducive to the production of image distortion.(9) Thus, the jaggedness of the edge of the UO image may be an indication that it was more than several hundred meters away, thus contradicing the hoax hypothesis. (NOTE ADDED IN THE YEAR 2000: this was considered a theoretical possibility 25 years ago. Now I consider it unlikely that any edge fuzziness could be directly related to distance.)
In conclusion

To echo Hartmann, the simplest interpretation of these photos is that they, indeed, show a distant object. However, simplicity does not necessarily imply truth. ·Further research will be necessary to resolve this case "once and for all."

NOTE: <>APPENDIX A provides further data and analysis regarding the brightness of a white vertical surface and also provides data to support the veiling glare analysis presented in the text.

The following images also provide further information:

Blbliography and Footnotes

1. Scientific Study of Unidentified Flying Objects, E.U. Condon, Ed. (Bantam, 1969, pg. 396)
2. P.J. Klass, UFO's Explained, Random House, New York (1974)
3. R. Sheaffer, private communication
4. C. Grover, private communication (Grover was a Navy professional photographer)
5. Note that the range increases with assumed darkness of the bottom of the UO. If the bottom were black, B(r,O) = 0, the range would be about 2.4 km with gamma = 0.6·
6. Handbook of Chemistry and Physics, Forty-first Edition, (Chemical Rubber Publishing Company, Cleveland, Ohio 1960)
7. Measurements have been made of the brightnesses of the bottoms of several model UO's made of uniformly translucent materials. The models were oriented with respect to the sun in the same way as it would have been if the UO in photo 1 were a model lit by the morning sun. The brightness of the bottom of each model was measured as a function of position, with the "front" part being that part closest to the sun (in photo 1 the front part of the elliptical image is at the right hand side). The front part of the bottom was found to be from 20% to 40% brighter than the back part for each model. However, the brightness variation of the image of the bottom of the UO in photo 1 is only (+/-)5% with the back somewhat brighter than the front. These experiments, and the comparison with the image of the UO, suggest that if the UO were a nearby model it was not made of a uniformly translucent material.
8. W. Spaulding, GSW Inc., Phoenix, Arizona, private communication. An electron microscope test of the negatives has shown that the grain structure is consistent with that of known Verichrome film, but not with Plus X.
9. However, experiments (e.g. R. S. Laurcnce and J. W. Strohbehn, "A Survey of Clear Air Propagation Effects Relevant to Optical Communications," Proc. IEEE 58, 1523 (1970))have shown that there is a period of time just after sunrise when the turbulence is quite low. The pictures may have been taken during this period. If this were so, even a very small amount of atmospheric edge distortion would correspond to a rather large distance to the object.
10. I thank Charles Grover, William Hartmann, and Robert Sheaffer for instructive comments on earlier versions of this paper. I also thank NICAP for free access to their files and for assistance in obtaining the negatives.
11. Note added in proof: the fog density of the negatives is consistent with the range of values expected when gamma = 0.5 to 0.6, but is larger than expected when gamma = 0.3. The brightness of the illuminated part of.the distant white wall and the brightness of the shaded part of the same wall have been calculated for gamma = 0.3, 0.4, and O.6. The calculated brightness ratios, (illuminated/shaded), are, respectively, 10(+/-)2, 3(+/-)0.5, and 2(+/-)0.2. A field measurement of the same ratio under conditions similar to those when the pictures were taken yielded 1.5 to 2. Thus both the fog density measurement and this brightness ratio measurement indicate that gamma is greater than 0.3 and perhaps even greater than 0.6.

Postpublication Notes

a) Experiments with a Kodak Vigilant lens of 153 mm focal length yielded the same or lower values of veiling glare than assumed in this paper.
b) Shadows on a surface that faces the east when the sun was in the west have been observed when a cumulous cloud was in the sky to the east of the surface.

NOTE 1 ADDED IN APRIL, 2000: A larger paper in which I discussed the "rest of the story", including cloud shadows and verbal testimony, was presented at the second conference of the Center for UFO Studies which occurred in 1981. That paper was eventually published by the Center in the Spectrum of UFO Research in 1988. See "The McMinnville Photos," the companion paper to this one.

NOTE 2 ADDED IN APRIL, 2000: A very recent re-investigation of the Trent sighting (ca. 1999) has demonstrated that the camera used was probably not a Kodak type but rather a "Roamer 1" built by Universal Camera Corp. of New York for several year starting in 1948. It was a very inexpensive camera with a minimum f stop of f/11 and a fixed shutter time of 1/50 sec. The focal length was rated at 100 mm. The camera was designed to be held in the "landscape" orientation (long dimension horizontal) and the direction finder was to be viewed from above, that is, the the operator held the camera at stomach or chest level and looked downward into the viewfinder to point the camera at the scene before taking the photo. The fact that the focal length of the camera was 100 mm rather than the 103 mm assumed here has no effect on the photometric calculations in this paper. Use of this shorter focal length does make the calculated size of the UO 3% larger, e.g., in Table IV all the diameters and thicknesses should be multiplied by 1.03. I thank Brad Sparks, Joel Carpenter and David Silver (President of the International Photographic Historical Association) for successfully identifying the camera that was actually used.

Case Directory
NICAP Home Page